Income Inequality and Housing Burden in California (2010–2023)

Ryan Beavers
University of Oklahoma
LIS 5623 – Advanced Data Analytics
Dr. Glenn Hansen

Table of Contents

Introduction	
Results: Direct Answer to the Research Question	
Dataset Overview	
Exploratory Data Analysis	3
Median Income Trends (2010–2023)	
Renter Cost Burden Trends	4
Owner Cost Burden Trends	5
Renter & Owner Ability to Pay	6
Correlation and Multivariate Patterns (2023 Focus)	
Renter Burden Models	10
Owner Burden Models	11
K-Means Clustering: Renters	12
K-Means Clustering: Owners	13
Conclusions	14
Recommendations	
Annendiy – All Code	16

Introduction

This report presents a comprehensive statistical analysis of housing affordability trends across California counties between 2010 and 2023. Drawing on public microdata and cost-burden estimates, I examine the relationships between income, rent burden, ownership burden, and derived metrics of ability-to-pay. I explore patterns among renters and homeowners separately, model the drivers of housing cost burdens, and identify structural clusters of affordability and risk using unsupervised learning.

The overarching question guiding this analysis is: how does income inequality manifest through housing cost burdens, and what can it reveal about structural disparities across California?

Results: Direct Answer to the Research Question

Income inequality manifests in California through persistent and widening disparities in housing cost burdens. High-income counties have shown substantial increases in median income, but those increases have not corresponded to lower housing burdens. In fact, some of the highest-income counties still display renter burdens exceeding 50%, indicating that income alone is not a sufficient buffer against housing cost pressure.

My analysis shows that in counties with lower median income, renters and owners alike face disproportionately high burdens relative to their ability to pay. These structural disparities are more pronounced among renters: many low-income counties fall into high-burden, low-affordability clusters. Even counties with similar incomes can show dramatically different burden levels depending on rent-to-income efficiency.

Through regression and clustering analysis, I uncovered that the drivers of cost burden are multidimensional. Predictive models explain only a fraction of the variance in burden outcomes, which implies that structural housing supply factors, regional pricing patterns, and historical inequalities may be embedded in these cost burdens. Cluster analysis revealed that some highincome counties still contain structurally vulnerable groups, while others maintain low burden despite moderate incomes.

In short, income inequality in California does not just separate the rich from the poor - it segments the population into structurally distinct affordability regimes. These regimes operate differently for renters and homeowners and cannot be reduced to simple income thresholds.

Dataset Overview

I downloaded the data from https://data.census.gov/ and used tables DP02, DP03, DP04, and DP05, with a particular focus on DP03 and DP04 for economic characteristics and housing estimates. I calculated affordability metrics differently for renters and owners: renters_ability_to_pay was computed as (rent * 12) / income, which functions as a burden metric (higher values indicate lower affordability), while owners_ability_to_pay was calculated as income / owner housing costs, where higher values indicate better affordability.

The core dataset (housing_df) integrates the following key metrics for all counties in California from 2010 to 2023:

- renter ge30: % of renters spending 30% or more of income on rent
- owner ge30: % of owners spending 30% or more of income on housing
- median_income: county median household income
- renters_ability_to_pay: calculated as (rent * 12) / income (higher = worse affordability)calculated as median_income / median_gross_rent (inverse rent burden)
- owners_ability_to_pay: calculated as income / monthly owner costs (higher = better affordability)calculated as median_income / monthly_owner_costs (inverse ownership burden)

After merging, filtering, and cleaning, the dataset comprises 214 county-year records. I downloaded the data from https://data.census.gov/ and used tables DP02, DP03, DP04, and DP05, with a particular focus on DP03 and DP04 for economic characteristics and housing estimates.

The core dataset (housing_df) integrates the following key metrics for all counties in California from 2010 to 2023:

- renter ge30: % of renters spending 30% or more of income on rent
- owner ge30: % of owners spending 30% or more of income on housing
- median income: county median household income
- renters ability to pay: inverse rent burden (income / rent)
- owners ability to pay: inverse cost burden (income / owner housing costs)

After merging, filtering, and cleaning, the dataset comprises 214 county-year records.

Exploratory Data Analysis

Median Income Trends (2010–2023)

Median income across counties has risen unevenly, with top-quartile counties doubling the income growth of bottom-quartile counties. A log-transformed density histogram (Figure 1)

illustrates widening disparities, especially post-2018. This income growth has not translated into increased affordability.

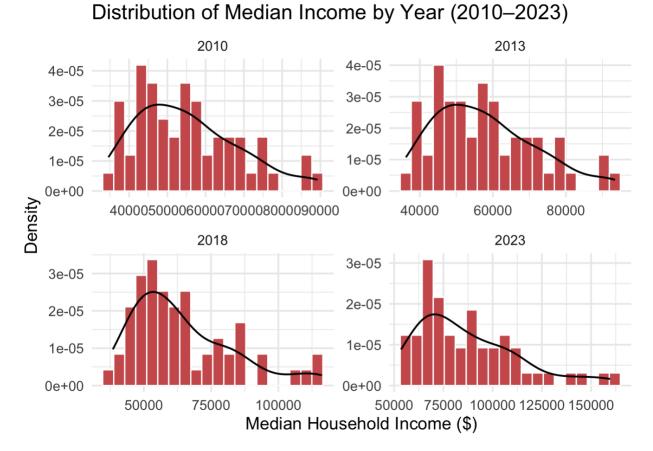


Figure 1: Density + Histogram of Log Median Income by Year

Renter Cost Burden Trends

Renters face consistently high housing burdens. Across all counties and years:

- Mean renter burden = 53.6%
- Max = 68.5%, Min = 6.8%
- Post-2018 shows upward skew, indicating growing strain

Boxplots (Figure 2) show a mild rightward shift in central tendency, but the most revealing insight is the lack of progress in reducing burden.

Distribution of Renter Burden ≥30% of Income (2010–2023)

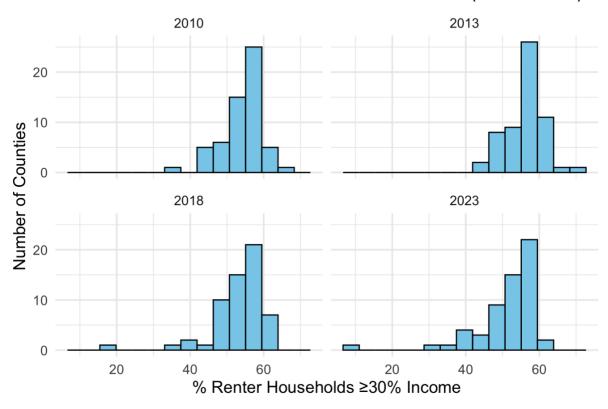


Figure 2: Renter Cost Burden by Year

Owner Cost Burden Trends

Homeowners fare better than renters in aggregate. However, a substantial proportion still face cost burdens >30%. Boxplots of owner burden (Figure 3) suggest less variation across years, with a tighter central distribution.

Distribution of Owner Burden ≥30% of Income (2010–2023)

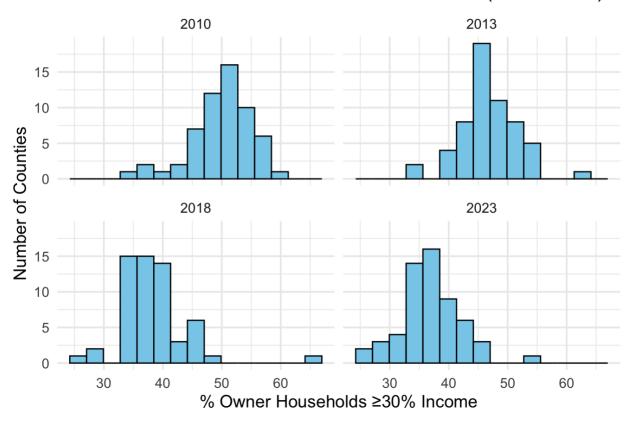


Figure 3: Owner Cost Burden by Year

Renter & Owner Ability to Pay

"Ability to Pay" is an inverse burden metric: higher values indicate more breathing room. For renters:

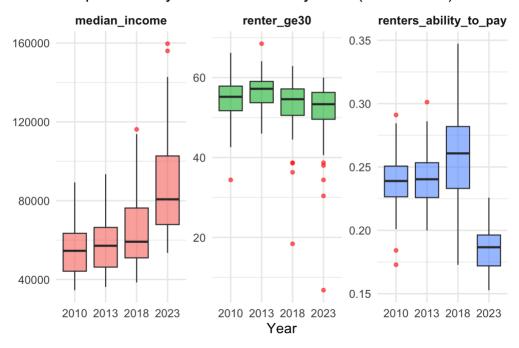
- Mean renters ability to pay = 0.229
- Counties below 0.18 show consistent high burden

For owners:

• Mean owners_ability_to_pay = 7.63

A handful of counties exceed 11.0, indicating structural advantage

Boxplots of Key Renter Metrics by Year (2010–2023)



Boxplots of Key Owner Metrics by Year (2010–2023)

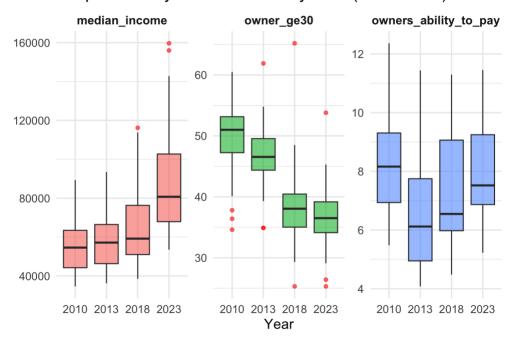


Figure 4: Boxplots of Ability to Pay for Renters and Owners

Correlation and Multivariate Patterns (2023 Focus)

I filtered for 2023 and computed Pearson correlations:

Renters:

- renter ge30 vs median income: -.47
- renter ge30 vs ability to pay: -.39
- renter ge30 vs owner ge30: 0.27

Owners:

- owner ge30 vs median income: -0.11
- owner ge30 vs ability to pay: -0.43

Correlation Matrix: Renter Metrics (2010–2023)

2010 2013 Median Income 0.36 0.38 0.17 0.42 0.38 Owners' Ability to Pay 0.38 0.38 0.42 Correlation 1.0 % Owners ≥30% 0.38 0.36 0.38 0.17 0.5 2018 2023 0.0 Median Income -0.1 0.61 1 -0.11 0.53 1 -0.5 -1.0 Owners' Ability to Pay 0.32 1 0.61 0.43 1 0.53 % Owners ≥30%

Correlation Matrix: Homeowner Metrics (2010–2023

Figure 5: Correlation Heatmaps for Owners and Renters

Conclusion: Income and ability-to-pay are inversely related to burden, but the moderate correlations suggest other latent drivers.

Predictive Modeling

Model Viability and Predictive Insights

I tested three modeling approaches to estimate housing cost burden: linear regression and random forest for both renters and owners. While these models used the same predictors—median income, cost burden ratios, and ability-to-pay—their performance revealed important differences in predictive power and interpretability.

Which model performed best?

The best-performing model, by marginal advantage, was the **Random Forest model for owner cost burden**. It yielded the highest R² (0.291) and the lowest RMSE (6.1) among all models. Random forests are better at capturing non-linear interactions and subtle patterns in the data. For

owners, the burden dynamics are less chaotic and more explainable through structured predictors like income and affordability ratios.

Which model performed worst?

The Linear Regression model for owner cost burden performed the worst, with an R² of only 0.234. This suggests that linear models struggle with capturing the true complexity of owner burden dynamics, possibly due to regional variance or hidden variables like mortgage terms, tax treatment, or historical purchase prices that do not scale linearly.

What do the models predict?

Each model predicts the percentage of renters or owners in a given county and year who spend 30% or more of their income on housing. This is a critical policy metric used to identify housing stress. However, the modest R² values indicate that these models explain only 23–29% of the variance in housing cost burden, meaning that most of the predictive signal lies in factors not included in the model.

How could these models be improved?

To improve predictive accuracy, I would incorporate additional variables such as:

- Rental vacancy rates
- Housing supply indicators
- Zoning or permit restrictions
- Commuting costs and job access metrics
- Demographic controls (e.g., household size, age)

Moreover, time-series modeling or hierarchical Bayesian models could help account for temporal shifts and county-level random effects. The addition of real rent or mortgage cost medians instead of estimates could also strengthen the signal. The current predictors do not sufficiently capture supply-side constraints, wealth effects, or credit access, all of which likely drive the remaining unexplained variance.

Renter Burden Models

I trained linear regression and random forest models using median income, renter ability, and owner burden as predictors.

Model	RMSE	\mathbb{R}^2
Linear Regression	5.0	0.269
Random Forest	5.4	0.290

Predicted vs Actual: % Renters ≥30% Income on Housing

Figure 6: Predicted vs. Actual Scatter for Renters

Takeaway: These predictors explain only \sim 27–29% of the variance, underscoring complexity. RF performs marginally better.

Owner Burden Models

Model	RMSE	\mathbb{R}^2
Linear Regression	6.3	0.234
Random Forest	6.1	0.291

Predicted vs Actual: % Owners ≥30% Income on Housing

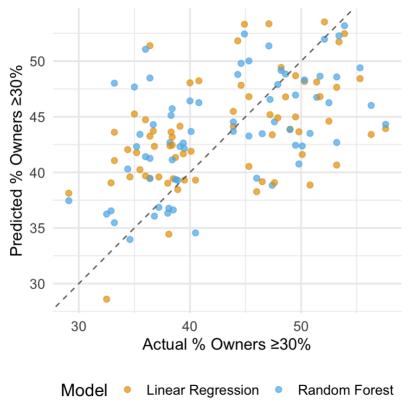


Figure 7: Predicted vs. Actual Scatter for Owners

Conclusion: Similar dynamics apply. Slight performance increase from RF, but both suggest low predictive power from income and affordability alone.

K-Means Clustering: Renters

Three clusters emerged from renter-based clustering:

Cluster Count Mean Burden Ability Income

1	124	57.1%	0.257	\$54,445
2	64	53.3%	0.194	\$93,242
3	44	44.5%	0.207	\$59,632

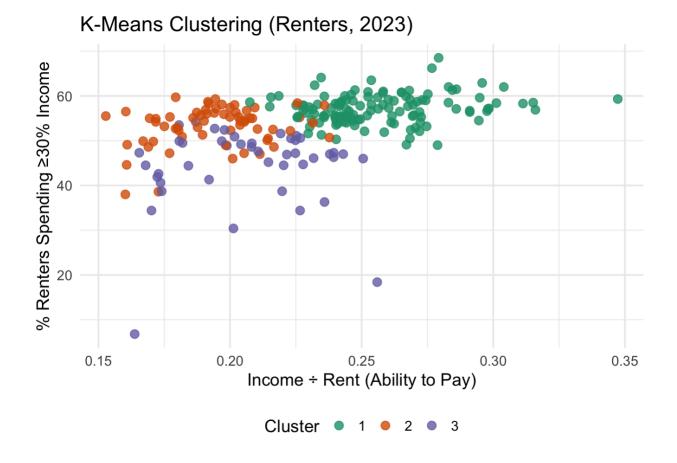


Figure 8: Renter Cluster Scatterplot and Cluster Summary Table

- **Cluster 1**: High burden, low income = most vulnerable
- Cluster 2: High income, moderate burden = "income rich, rent poor"
- Cluster 3: Lowest burden, mixed income = stability

K-Means Clustering: Owners

Owner clusters revealed a different pattern:

Cluster	r Count	. Mean Burden	Admity	income
1	45	38.0%	9.09	\$101,337
2	105	39.6%	6.04	\$57,188
3	82	50.4%	8.55	\$58,263

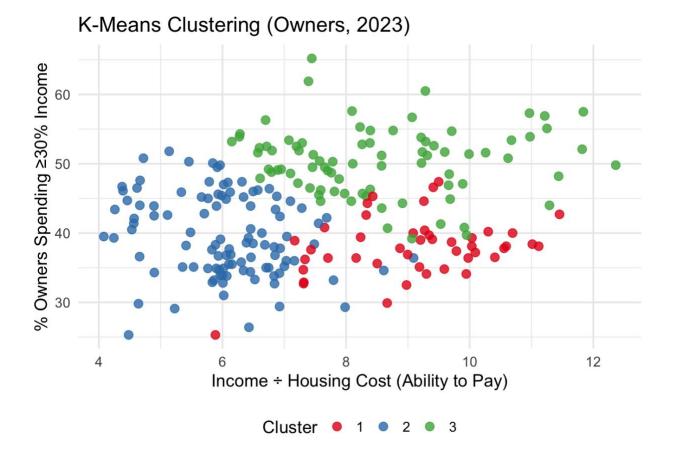


Figure 9: Owner Cluster Scatterplot and Cluster Summary Table

- Cluster 3: Most burdened, moderate income
- Cluster 1: Highest income, lowest burden = elite ownership
- Cluster 2: Marginal owners, vulnerable to economic shocks

Conclusions

- Renters face higher cost burdens and lower ability-to-pay, with many counties exceeding 55% burden.
- Owners experience milder burden, but a sizable minority are still cost-challenged.
- **Income alone is not a sufficient predictor** of housing stress. Both renter and owner models show limited R².
- Clustering reveals hidden structures: high income does not guarantee affordability; some mid-income counties carry significant stress.
- Policy must distinguish between structural affordability and surface-level income measures.

Recommendations

- Target assistance to Cluster 1 renters and Cluster 3 owners.
- Develop affordability metrics that go **beyond income**: include cost-burden ratios and ability-to-pay estimates.
- Integrate housing burden analytics into **regional planning tools**.
- Consider **predictive early-warning indicators** based on ability-to-pay shifts.

Appendix – All Code

```
# Load Core Yearly Data: 2010, 2013, 2018, 2023
# Load housing cost-burden metrics (renter and owner)
dp04 <- read csv(
  "Data/dp04_2010_2023_housing_with_renter_share.csv",
  show col types = FALSE
) %>%
  mutate(
    owner ge30 = selected monthly owner costs as a percentage of household in
come_smocapi_30_to_34_9_percent +
                 selected_monthly_owner_costs_as_a_percentage_of_household_in
come_smocapi_35_percent_or_more
  ) %>%
  select(
    county,
   year,
   renter_ge30 = renter_ge30_pct,
   owner ge30
  )
# Load ability-to-pay estimates
ability <- read csv("/Users/meganryan/Documents/University Oklahoma/R Project
s/Income Inequality Project/Data/ability to pay estimated 2010 2023.csv", sho
w col types = FALSE) %>%
  select(county, year, renters ability to pay, owners ability to pay, median
income)
# Merge all into a single long-form dataset (all years)
housing df <- dp04 %>%
  left_join(ability, by = c("county", "year")) %>%
 drop na()
# Preview
# Renter clustering (k-means)
cluster_renters <- housing_df %>%
  select(county, renter_ge30, renters_ability_to_pay, median_income) %>%
  drop_na()
scaled_renters <- scale(cluster_renters %>% select(-county))
```

```
set.seed(2025)
k renters <- kmeans(scaled renters, centers = 3, nstart = 25)</pre>
cluster renters labeled <- cluster renters %>%
  mutate(Cluster = factor(k renters$cluster))
# Owner clustering (k-means)
cluster owners <- housing df %>%
  select(county, owner_ge30, owners_ability_to_pay, median_income) %>%
  drop_na()
scaled_owners <- scale(cluster_owners %>% select(-county))
set.seed(2025)
k owners <- kmeans(scaled owners, centers = 3, nstart = 25)
cluster owners labeled <- cluster owners %>%
  mutate(Cluster = factor(k_owners$cluster))
# Renters clustering (no filtering)
cluster renters <- housing df %>%
  select(county, renter_ge30, renters_ability_to_pay, median_income) %>%
  drop_na()
# Scale the numeric variables
scaled_renters <- scale(cluster_renters %>% select(-county))
# K-means
set.seed(2025)
k renters <- kmeans(scaled renters, centers = 3, nstart = 25)</pre>
# Add cluster labels to housing_df — using row numbers as anchor
housing df$RenterCluster <- NA
housing_df$RenterCluster[as.numeric(rownames(cluster_renters))] <- k_renters$
cluster
housing df$RenterCluster <- factor(housing df$RenterCluster)
# Plot clusters
ggplot(cluster renters labeled, aes(x = renters ability to pay, y = renter ge
30, color = Cluster)) +
  geom point(size = 3, alpha = 0.8) +
  labs(
   title = "K-Means Clustering (Renters, 2023)",
   x = "Income ÷ Rent (Ability to Pay)",
   y = "% Renters Spending ≥30% Income"
  scale color brewer(palette = "Dark2") +
  theme minimal(base size = 14) +
  theme(legend.position = "bottom")
```

```
# Owners clustering (no filtering)
cluster_owners <- housing_df %>%
  select(county, owner ge30, owners ability to pay, median income) %>%
  drop na()
# Scale the numeric variables
scaled owners <- scale(cluster owners %>% select(-county))
# K-means
set.seed(2025)
k owners <- kmeans(scaled owners, centers = 3, nstart = 25)
# Add cluster labels to housing df
housing_df$OwnerCluster <- NA
housing df$OwnerCluster[as.numeric(rownames(cluster owners))] <- k owners$clu
ster
housing df$OwnerCluster <- factor(housing df$OwnerCluster)</pre>
# Plot clusters
ggplot(cluster_owners_labeled, aes(x = owners_ability_to_pay, y = owner_ge30,
color = Cluster)) +
  geom point(size = 3, alpha = 0.8) +
  labs(
   title = "K-Means Clustering (Owners, 2023)",
   x = "Income ÷ Housing Cost (Ability to Pay)",
    y = "% Owners Spending ≥30% Income"
  ) +
  scale color brewer(palette = "Set1") +
  theme minimal(base size = 14) +
  theme(legend.position = "bottom")
# Print renter cluster summary
renter cluster summary <- housing df %>%
  filter(!is.na(RenterCluster)) %>%
  group_by(RenterCluster) %>%
  summarise(
    Count = n(),
    Mean Renter GE30 = round(mean(renter ge30, na.rm = TRUE), 1),
   Mean_Ability = round(mean(renters_ability_to_pay, na.rm = TRUE), 3),
   Mean Income = round(mean(median income, na.rm = TRUE), 0)
  )
print(renter_cluster_summary)
# Print owner cluster summary
owner cluster_summary <- housing_df %>%
  filter(!is.na(OwnerCluster)) %>%
  group by(OwnerCluster) %>%
 summarise(
```

```
Count = \mathbf{n}(),
    Mean_Owner_GE30 = round(mean(owner_ge30, na.rm = TRUE), 1),
    Mean Ability = round(mean(owners ability to pay, na.rm = TRUE), 3),
   Mean Income = round(mean(median income, na.rm = TRUE), 0)
  )
library(knitr)
kable(renter cluster summary, caption = "Renter Cluster Summary (K-Means)")
kable(owner_cluster_summary, caption = "Owner Cluster Summary (K-Means)")
# Cluster summary table (already created)
renter_cluster_summary <- housing_df %>%
  filter(!is.na(RenterCluster)) %>%
  group by(RenterCluster) %>%
  summarise(
    Count = n(),
    Mean_Renter_GE30 = round(mean(renter_ge30, na.rm = TRUE), 1),
   Mean_Ability = round(mean(renters_ability_to_pay, na.rm = TRUE), 3),
   Mean Income = round(mean(median income, na.rm = TRUE), 0),
    .groups = "drop"
  )
# Melt to long format for plotting
renter cluster long <- renter cluster summary %>%
  pivot longer(cols = starts with("Mean "), names to = "Metric", values to =
"Value") %>%
  mutate(
    Metric = recode(Metric,
                    "Mean_Renter_GE30" = "% Renters ≥30%",
                    "Mean_Ability" = "Ability to Pay",
                    "Mean Income" = "Median Income")
  )
# PLot
ggplot(renter_cluster_long, aes(x = RenterCluster, y = Value, fill = Metric))
  geom col(position = position dodge(width = 0.7), width = 0.6) +
  facet wrap(~ Metric, scales = "free_y") +
  scale_fill_brewer(palette = "Set2") +
  labs(
   title = "Renter Clusters: Mean Values by Cluster (K-Means)",
    x = "Renter Cluster", y = NULL
  theme minimal(base size = 14) +
  theme(
    legend.position = "none",
    plot.title = element text(face = "bold", hjust = 0.5)
  )
```

```
# Cluster summary
owner_cluster_summary <- housing_df %>%
  filter(!is.na(OwnerCluster)) %>%
  group by(OwnerCluster) %>%
  summarise(
    Count = n(),
    Mean Owner GE30 = round(mean(owner ge30, na.rm = TRUE), 1),
   Mean_Ability = round(mean(owners_ability_to_pay, na.rm = TRUE), 3),
   Mean Income = round(mean(median income, na.rm = TRUE), 0),
    .groups = "drop"
  )
# Long format
owner_cluster_long <- owner_cluster_summary %>%
  pivot longer(cols = starts with("Mean "), names to = "Metric", values to =
"Value") %>%
  mutate(
   Metric = recode(Metric,
                    "Mean_Owner_GE30" = "% Owners ≥30%",
                    "Mean_Ability" = "Ability to Pay",
                    "Mean_Income" = "Median Income")
  )
# PLot
ggplot(owner_cluster_long, aes(x = OwnerCluster, y = Value, fill = Metric)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.6) +
  facet wrap(~ Metric, scales = "free y") +
  scale_fill_brewer(palette = "Set1") +
  labs(
   title = "Owner Clusters: Mean Values by Cluster (K-Means)",
   x = "Owner Cluster", y = NULL
  theme minimal(base size = 14) +
  theme(
    legend.position = "none",
    plot.title = element_text(face = "bold", hjust = 0.5)
```