Cyber Defense Analysis Event Correlation Across Network and
System. Logs— Preliminary Results Report

Ryan Beavers

October 28, 2025

Contents
1 Executive Summary

2 Methodology
2.1 Analytical Framework
2.2 Data Sources
2.3 Data Preparation
2.4 Statistical Methods L
2.5 Integration and Validation L o

2.6 Limitations e e

3 Preliminary Results
3.1 Port-Scan Phase — Events & Unique Ports (5 s Aggregation)
3.2 Port Scan — Events & Unique Ports (5s), .
3.21 Purposeo e
3.2.2 Method e
3.2.3 Results and Interpretation oo oo
3.3 Brute Force — Failure Rate & Count Model (1m)
3.3.1 Purpose e e e
3.3.2 Method e
3.3.3 Results and Interpretationo oo
3.4 Command Injection — Suspicious URIs & Exact Test (1m)
341 Purpose e
3.4.2 Method e
3.4.3 Results and Interpretation o oL oL

3.4.4 Limitations and Future Refinements

4 Discussion and Interpretation

4.1 OVErvIeW e
4.2 Integration Across Phases
4.3 Interpretive Significance
4.4 Limitations and Future Directions L.
4.5 Future work will address these limitations by:

5 Next Steps and Recommendations

5.1 Purpose of this phase. L L
5.2 Baseline and Threshold Refinement
5.3 Model Enhancement
5.4 Feature and Rule Tuning L oo
5. Summary ... e

6 Conclusion

7 Bayesian Modeling Framework

7.1 Model Structure
7.2 Hierarchical Extension
7.3 Implementation

8 Appendix A - Session Info

9 Appendix B - Code

9.1 Section 3.1 Data Wrangling
9.2 Section 3.2.Port Scan
9.3 Section 3.3 Brute Force Attack Lo
9.4 Section 3.4 Command Injection oL

14
14
14
14
15
15

15
15
15
16
16
16

16

17
17
17
17

19

1 Executive Summary

This preliminary analysis investigates multi-stage intrusion activity within synthetic enterprise log
data, demonstrating how statistical and visual analytics can reveal coordinated attacks in complex
network environments.

Four complementary log sources—network traffic, authentication attempts, web requests, and sys-
tem telemetry—were integrated to track three simulated attack phases: port scanning, brute-force
authentication, and command-injection exploitation. Through structured time-series aggregation,
per-interval event metrics, and count-based modeling, the analysis isolates distinctive temporal
signatures for each phase. Network flow data show sharp bursts of new connections and unique
destination ports within the scanning window, clearly distinguishing reconnaissance from normal
background noise. Authentication logs record an order-of-magnitude surge in failed login attempts
consistent with automated password guessing, followed by web logs that display tightly clustered
command-injection payloads. Together these signals form a coherent picture of the full cyber kill
chain—reconnaissance — access — exploitation—captured statistically and visually in real time.

The results highlight the practical value of quantitative cybersecurity analysis. Techniques such
as aggregation, rate modeling, and anomaly detection transform raw telemetry into interpretable
evidence of system behavior. This statistical lens distinguishes genuine threats from routine fluctu-
ations, providing a foundation for adaptive alert thresholds, change-point detection, and Bayesian
risk scoring. When paired with contextual indicators like IP reputation or user role, the framework
enables data-driven triage and more efficient allocation of analyst attention.

At a broader level, the study illustrates how applied statistics bridges data science and cyber defense.
In environments that generate terabytes of telemetry daily, embedding statistical reasoning within
detection pipelines turns those data into a dynamic sensor network capable of learning baselines and
identifying meaningful deviations. The transparent, auditable nature of these methods complements
traditional rule- or signature-based systems, reducing both false positives and analyst fatigue.

The preliminary results confirm that the analytical framework performs as intended: it success-
fully identifies attack windows, quantifies effect sizes, and provides interpretable visual evidence of
coordinated malicious activity. Subsequent phases will refine baseline estimation, extend to proba-
bilistic and Bayesian modeling for uncertainty quantification, and establish operational thresholds
for real-world deployment. Collectively, these efforts demonstrate how rigorous statistical method-
ology can enhance situational awareness and resilience in modern cybersecurity operations.

2 Methodology

2.1 Analytical Framework

This study implements a structured, multi-log analysis pipeline designed to detect and quantify
staged intrusion behavior within synthetic enterprise telemetry. The overarching goal was to trans-
late heterogeneous log data—mnetwork traffic, authentication attempts, and web access records—into
unified time-series representations suitable for statistical modeling and visual inspection.

Each simulated attack phase (port scanning, brute-force authentication, and command injection)
was defined by a known ground-truth window. Analyses were conducted to confirm that empirical
log features aligned with these time intervals and to assess each attack’s statistical distinctiveness
relative to baseline activity.

2.2 Data Sources

The dataset comprised four primary CSV files generated from controlled simulations:

e net_ traffic.csv: IP-level connection records capturing timestamped flow events

o auth_ log.csv: authentication attempts with success/failure status

e apache__access.csv: web requests including URIs and response codes

o synthetic_ telemetry.csv: background system metrics used for cross-log timing validation

All data were stored in the working directory /Users/meganryan/Documents/University_Oklahoma/DSP_XXXX/Ce
Project-DSP5873/Data/ and imported into R (v4.5.1) using readr and dplyr.

2.3 Data Preparation

Timestamps were parsed into POSIXct objects and resampled into fixed aggregation intervals:

o 5-second bins for network flow analysis (high-resolution event spikes)
o 1-minute bins for authentication and web access logs (lower-frequency processes)

Missing values were minimal and handled implicitly during aggregation. Each log was annotated
with a Boolean in_window variable indicating whether a record fell within a labeled attack period.
Derived metrics—such as event counts, unique destination ports, and failure rates—were computed
for each interval.

2.4 Statistical Methods

For each attack phase, tailored methods were applied:

e Port Scan Detection: Count of total events and unique destination ports per 5-second
bin. Moving averages and z-score normalizations were used to flag statistical spikes relative
to local baseline behavior.

e Brute Force Authentication: Failure and total attempt counts were aggregated per
minute. Comparative inference used both a pooled rate ratio and a quasi-Poisson re-
gression with a log(total) offset to estimate the incidence rate ratio (IRR) for attack
vs. baseline.

e Command Injection Analysis: Requests containing suspicious payloads were identified
via conservative regular expressions (e.g., “cmd=", “;”, “/bin/”). Due to sparse baseline
counts, inference employed Fisher’s exact test on a 2x2 contingency table, producing an

exact p-value and confidence interval for the odds ratio.

2.5 Integration and Validation
A cross-log overlay was generated to validate temporal coherence among phases. This visualiza-

tion confirmed that anomalies across network, authentication, and web layers followed the expected
kill-chain sequence: reconnaissance — credential attack — exploitation.

All analyses and figures were produced in R Markdown using the tidyverse and ggplot2 li-
braries, ensuring reproducibility.

2.6 Limitations
The dataset is synthetic and time-constrained, which ensures control over ground truth but limits
generalizability. Future iterations will extend the framework to probabilistic (Bayesian) modeling to

quantify uncertainty, explore hierarchical dependencies across users and ports, and apply baseline
estimation over longer observation windows.

3 Preliminary Results

3.1 Port-Scan Phase — Events & Unique Ports (5 s Aggregation)

Working directory: /Users/meganryan/Documents/University_Oklahoma/DSP_XXXX/Capstone Project:
Files in Data/: apache_access.csv, auth_log.csv, net_traffic.csv, README_SYNTHETIC_LOGS.txt

A tibble: 1 x 6

net_rows auth_rows web_rows net_cols auth_cols web_cols
#i# <int> <int> <int> <int> <int> <int>
1 28711 3180 24315 5 4 5

3.1.0.1 Experiment Metadata

A tibble: 3 x 3

phase start end
Hit <chr> <dttm> <dttm>
1 Port scan 2025-10-10 09:12:00 2025-10-10 09:20:00

2 Brute force 2025-10-10 09:35:00 2025-10-10 09:45:00
3 Cmd injection 2025-10-10 10:05:00 2025-10-10 10:10:00

3.2 Port Scan — Events & Unique Ports (5 s)
3.2.1 Purpose

This stage of analysis targets reconnaissance behavior—the initial phase of an intrusion where an
attacker systematically probes multiple ports on a target host to identify open services. In network

telemetry, port scanning typically manifests as a rapid increase in both the number of connec-
tion attempts and the diversity of destination ports contacted within very short time windows.
Recognizing these bursts is essential, as reconnaissance often precedes credential attacks or direct
exploitation. Establishing reliable detection thresholds allows analysts to distinguish true scanning
activity from legitimate multi-port traffic such as service discovery or load balancing.

3.2.2 Method

Network flow records were aggregated into 5-second intervals to preserve fine-grained temporal
structure. Two key metrics were computed for each bin:

Event count: the total number of connection attempts, and
Unique destination ports: the number of distinct ports contacted during the interval.

To identify anomalous spikes, a moving average and corresponding z-score were calculated for each
sequence. Intervals with unusually high deviations from the local mean were flagged as potential
scan bursts. This approach treats the data as a short-term time series of counts, emphasizing
relative change rather than absolute volume and avoiding assumptions about the underlying dis-
tribution.

3.2.3 Results and Interpretation

The 5-second aggregation reveals a sharp, concentrated burst of connections between 09:12 and
09:20, coinciding precisely with the labeled port-scan window. Each interval displays nearly a
one-to-one relationship between total events and unique destination ports, confirming sequential
probing across many ports rather than repeated attempts against a single service. Outside this
period, both metrics return to near-zero levels, establishing a clear behavioral boundary between
baseline and attack conditions.

The contrast between normal and in-window activity validates the analytic design and confirms that
the model effectively captures reconnaissance behavior. These metrics—events per 5 seconds and
unique ports per 5 seconds—form the quantitative foundation for defining scan detection thresholds.
In operational practice, they can be tuned to minimize false positives and may later serve as priors
in Bayesian or probabilistic models that estimate the likelihood of scanning behavior under live
network conditions.

A tibble: 10 x 7

#it t5 events uniq_ports in_window ma_events z_events flag_spike
<dttm> <int> <int> <1gl> <dbl> <dbl> <1gl>
1 2025-10-10 09:12:00 163 163 TRUE NA 0.841 FALSE
2 2025-10-10 09:12:05 180 180 TRUE 164 1.82 FALSE
3 2025-10-10 09:12:10 149 149 TRUE 158. 0.0356 FALSE
4 2025-10-10 09:12:15 144 144 TRUE 151. -0.252 FALSE
5 2025-10-10 09:12:20 161 161 TRUE 149. 0.726 FALSE
6 2025-10-10 09:12:25 141 141 TRUE 148. -0.425 FALSE
7 2025-10-10 09:12:30 143 143 TRUE 144. -0.310 FALSE
8 2025-10-10 09:12:35 147 147 TRUE 149. -0.0795 FALSE
9 2025-10-10 09:12:40 158 157 TRUE 151. 0.553 FALSE

10 2025-10-10 09:12:45 147 147 TRUE 160. -0.0795 FALSE

150 -

B Spike?
~
)
g 100 - e FALSE
> e TRUE
w

50 -

b

09:12 09:14 09:16 0918 09:20

Figure 1: Port scan — events per 5s with spike flags

3.3 Brute Force — Failure Rate & Count Model (1 m)

3.3.1 Purpose

Following reconnaissance, the next stage in many intrusion sequences involves brute-force authen-
tication attacks, in which an adversary systematically submits repeated login attempts in an effort
to guess valid credentials. Statistically, this behavior should manifest as a sharp and sustained
increase in the rate and count of authentication failures within a defined time window. Detect-
ing such patterns is critical because they distinguish deliberate credential-abuse campaigns from
normal user error or background authentication noise.

Unique dst ports / 5s

150 -

100-

50 -

0912

0914 0916 09:18

Figure 2: Port scan — unique destination ports per 5s

09:20

3.3.2 Method

Authentication log data were aggregated into 1-minute intervals, producing per-minute counts of
total login attempts and failed attempts. The central metric of interest—the failure rate—was
calculated as the ratio of failed to total attempts for each interval. To quantify the deviation from
baseline behavior, two complementary inferential approaches were applied:

Pooled rate ratio: compared the overall failure rate during the designated attack window (09:35—
09:45) to that observed outside the window.

Quasi-Poisson regression: modeled the number of failures per minute as a function of the binary
variable attack_window, using the logarithm of total attempts as an exposure offset.

The quasi-Poisson family was selected to account for mild overdispersion typical of count data
in security telemetry. Together, these methods provide both intuitive rate comparisons and for-
mal statistical inference—estimating effect sizes, confidence intervals, and significance levels that
translate raw log counts into interpretable evidence of abnormal behavior.

3.3.3 Results and Interpretation

The results show a pronounced and statistically significant shift in authentication activity during the
attack window. Baseline periods average fewer than one failure per dozen attempts (approximately
8 %), while the attack interval exhibits a near-total failure rate of about 99 %, consistent with
automated password guessing. Both the pooled rate ratio and the quasi-Poisson incidence rate
ratio (IRR) converge on an approximate twelvefold increase relative to baseline (p < 0.001).

This large, multiplicative effect confirms that the observed spike is not the result of random variation
but reflects a deliberate, systematic intrusion attempt. The strength and clarity of the signal
validate the analytical framework for detecting credential-abuse events and establish data-driven
thresholds for operational alerting. In a broader context, these metrics provide a foundation for
adaptive detection—where future models can incorporate Bayesian posterior estimation or rolling
baselines to dynamically recalibrate thresholds as authentication behavior evolves over time.

A tibble: 10 x 5

minute fails total rate in_window
<dttm> <int> <int> <dbl> <1gl>
1 2025-10-10 09:00:00 0 2 0 FALSE
2 2025-10-10 09:02:00 0 1 0 FALSE
3 2025-10-10 09:03:00 0 1 0 FALSE
4 2025-10-10 09:04:00 0 2 0 FALSE
5 2025-10-10 09:05:00 0 1 0 FALSE
6 2025-10-10 09:06:00 0 1 0 FALSE
7 2025-10-10 09:07:00 0 1 0 FALSE
8 2025-10-10 09:08:00 0 1 0 FALSE
9 2025-10-10 09:09:00 0 2 0 FALSE
10 2025-10-10 09:10:00 0 1 0 FALSE

Baseline: 11/135 (rate = 0.081) | Attack: 3029/3045 (rate = 0.995) | Rate ratio: 12.21 (95%
CI [6.75, 22.07))

Fail / Total

100% -

75% -

50% -

25% -

0% -

N

09:00

09:30

10:00

w

10:30

Figure 3: Brute force — auth failure rate per minute

10

11:00

Quasi-Poisson model (fails ~ attack + offset(log(total))) Estimate Std. Error t value
Pr(>|t|) (Intercept) -2.507380 0.2905329 -8.630277 1.496129e-13 attack 2.502111 0.2910600
8.596548 1.763571e-13

IRR (attack vs baseline) 12.21

3.4 Command Injection — Suspicious URIs & Exact Test (1 m)
3.4.1 Purpose

This phase examines the exploitation stage of the attack sequence, where an adversary attempts
to execute system-level commands through malicious web requests. Command-injection activity
represents a high-impact threat: it directly targets host integrity and can lead to data exfiltration,
privilege escalation, or persistent access. From a statistical perspective, command-injection patterns
are typically sparse but concentrated—rare in normal traffic yet densely clustered when exploitation
occurs. The objective of this analysis is to determine whether suspicious request patterns are
confined to the labeled attack window and to quantify the strength of association using exact
inference methods suitable for low-count data.

3.4.2 Method

Web-access logs were parsed and aggregated into 1-minute intervals to capture request-level dynam-
ics while maintaining computational efficiency. Each request URI was evaluated using conservative
regular expressions designed to detect likely command-injection payloads. These patterns included
explicit indicators such as cmd=, shell metacharacters like ; or &&, references to /bin/, and known
encoded payload structures. For each minute, two metrics were calculated:

ci_ hits: number of URIs flagged as suspicious
total: total number of requests during that minute

Because suspicious hits were nearly absent outside the attack window, traditional asymptotic tests
(e.g., large-sample z-tests) would overstate significance. Instead, a Fisher’s exact test was applied
to a 2 X 2 contingency table contrasting attack vs. baseline and hit vs. non-hit counts. This
approach provides an exact p-value and confidence interval for the odds ratio, ensuring reliable
inference even under extreme sparsity. Pooled baseline and attack rates were also reported to aid
operational interpretation.

3.4.3 Results and Interpretation

The results show a stark contrast between baseline and attack activity. Suspicious URIs are virtu-
ally absent during baseline periods and sharply concentrated in the designated command-injection
window—approximately 2,100 flagged requests versus none outside the window. Fisher’s exact test
returns a p-value effectively equal to zero and an unbounded odds ratio, indicating perfect separa-
tion between normal and attack conditions. The pooled attack rate (~59 % of total requests during
the window) compared to a near-zero baseline provides strong, statistically definitive evidence of
exploitation behavior rather than random fluctuation.

Operationally, these findings carry several implications:

11

Immediate triage priority: bursts of command-injection payloads should trigger prompt investiga-
tion and containment measures.

Pattern precision: conservative regex rules reduce false positives but may miss obfuscated payloads;
expanding the library with adaptive pattern matching can improve coverage.

Integrated alerting: combining URI-based detection with corroborating indicators—HTTP re-
sponse codes, response sizes, or host-level anomalies—can help reduce analyst fatigue while main-
taining sensitivity.

3.4.4 Limitations and Future Refinements

Because baseline counts are zero, effect-size estimates are mathematically unbounded and highly
sensitive to regex design. Future refinements should:

Expand and validate the pattern library against benign traffic to assess specificity.

Incorporate payload decoding (URL or base64) to capture encoded exploits.

Correlate suspicious requests with server-side events such as process creation or outbound traffic
anomalies.

Explore Bayesian hierarchical modeling to borrow strength across users, endpoints, or time win-
dows, producing more stable inferences under low-signal conditions.

A tibble: 10 x 5

minute ci_hits total rate in_window
<dttm> <int> <int> <dbl> <1gl>
1 2025-10-10 09:00:00 0 198 0 FALSE
2 2025-10-10 09:01:00 0 183 0 FALSE
3 2025-10-10 09:02:00 0 174 0 FALSE
4 2025-10-10 09:03:00 0 156 0 FALSE
5 2025-10-10 09:04:00 0 169 0 FALSE
6 2025-10-10 09:05:00 0 175 0 FALSE
7 2025-10-10 09:06:00 0 171 0 FALSE
8 2025-10-10 09:07:00 0 168 0 FALSE
9 2025-10-10 09:08:00 0 183 0 FALSE
10 2025-10-10 09:09:00 0 175 0 FALSE
hits nonhits

attack 2120 1456
baseline 0 20739

$baseline_rate
[1]1 O

#i#

$attack_rate
[1] 0.5928412
#i#

12

ClI hits / min

400~

300~

200~

100-

09:00

0930 10:00 10:30

Figure 4: Command-injection — suspicious requests per minute

13

1
11:00

$rate_ratio

[1] Inf

#it

$fisher_p

[1] O

#it

$fisher_confint

[1] 8402.051 Inf
attr(,"conf.level")
[1] 0.95

4 Discussion and Interpretation

4.1 Overview

The preliminary findings show that structured statistical aggregation and targeted count-based
modeling can successfully reconstruct a multi-stage intrusion sequence from complex system logs.
Each analytic stream isolates a distinct behavioral signature that maps cleanly onto a classical
cyber kill chain: reconnaissance (port scanning), credential attack (brute-force authentication),
and exploitation (command injection). Together, these results demonstrate how even relatively
simple statistical methods—when applied systematically—can transform raw telemetry into clear,
interpretable evidence of coordinated malicious activity.

4.2 Integration Across Phases

Temporal continuity. The combined visualization of network, authentication, and web activity
reveals a coherent progression in time: port-scan bursts precede the surge of authentication failures,
which are then followed by concentrated command-injection attempts. This sequential pattern
confirms both the validity of the synthetic timeline and the integrity of time alignment across log
sources.

Signal separation. Each attack phase expresses a distinct statistical signature. Port scanning ap-
pears as short, high-frequency bursts; brute-force attempts manifest as sustained rate increases; and
command injection shows an almost binary pattern—absent in baseline, then suddenly dominant
during exploitation. These contrasts indicate that multi-metric or ensemble detection strategies
could be developed to capture a wider range of anomalous behaviors within a unified framework.

Methodological soundness. The chosen methods—quasi-Poisson regression for overdispersed counts
and Fisher’s exact test for sparse contingency data—performed reliably and produced stable esti-
mates. The absence of convergence or scaling issues confirms that the data transformations and
binning resolutions were well calibrated to the underlying event frequencies.

4.3 Interpretive Significance

The analyses reinforce how structured statistical reasoning provides a transparent and defensi-
ble bridge between raw telemetry and operational intelligence. Unlike opaque machine-learning

14

classifiers, the methods here yield explicit rate ratios, confidence intervals, and interpretable di-
agnostics that tie directly to measurable deviations from baseline behavior. This transparency is
critical in cybersecurity contexts where every alert must be explainable, auditable, and supported
by quantitative evidence.

4.4 Limitations and Future Directions

The current results are derived from a controlled, synthetic dataset with known ground truth and
a single, clearly bounded adversary. While this design validates the analytic process, it simplifies
the complexities of real-world networks, where overlapping behaviors, user variability, and noisy
baselines complicate detection. Moreover, fixed statistical thresholds may not generalize to dynamic
environments without adaptive calibration.

4.5 Future work will address these limitations by:

Implementing Bayesian hierarchical models to incorporate uncertainty and share information across
hosts, ports, or users.

Developing adaptive thresholding using quantile-based or posterior predictive calibration.

Exploring multivariate fusion of network, authentication, and web features for integrated anomaly
scoring.

Testing the framework on semi-synthetic and live operational data to assess robustness under
natural variability, time drift, and concurrent events.

5 Next Steps and Recommendations

5.1 Purpose of this phase

The preliminary analyses confirm that the analytic framework behaves as expected—detecting,
quantifying, and aligning each stage of the simulated intrusion. The next stage shifts focus from
verification to refinement, generalization, and operationalization. The objectives are to validate
thresholds, introduce uncertainty quantification, and ensure that the methods can scale to real-
world telemetry.

5.2 Baseline and Threshold Refinement

Compute formal baselines for each metric (events / 5 s, unique ports / 5 s, failure rate / min,
suspicious URIs / min) using longer pre-attack windows or non-attacker — server traffic.

Estimate median and 95th-percentile values to define conservative thresholds for anomaly flags.

Evaluate false-positive rates by applying these thresholds to known-benign periods.

15

5.3 Model Enhancement

Extend from deterministic thresholds to probabilistic/Bayesian models (e.g., brms or JAGS) that
yield posterior distributions for event-rate parameters.

Incorporate hierarchical structure (by port, user, or host) to share statistical strength across related
entities and improve stability under sparse data.

Conduct posterior predictive checks to assess goodness of fit and calibrate model priors.

5.4 Feature and Rule Tuning

Expand and refine command-injection regular expressions to capture encoded or obfuscated pay-
loads.

Cross-validate detection rules against benign web traffic to balance precision and recall.

Integrate contextual features—HTTP status codes, response sizes, user agents—to reduce false
alarms.

5.5 Summary

These next steps transition the project from exploratory validation to actionable methodology. By
quantifying baselines, integrating probabilistic inference, and extending analysis to authentic data
streams, the final report will demonstrate not only that the framework detects known attack stages,
but that it can adapt to unseen patterns and operate within real-world analytic environments.

6 Conclusion

The preliminary phase demonstrates that structured statistical aggregation and inferential model-
ing can effectively reconstruct complex, multi-stage intrusion activity within enterprise log envi-
ronments. Each analytic stream—mnetwork, authentication, and web—revealed clear, interpretable
signatures corresponding to the canonical attack sequence of reconnaissance — credential abuse —
exploitation. The methods applied—count aggregation, quasi-Poisson regression, and Fisher’s ex-
act inference—proved computationally efficient, transparent, and well suited to early-stage anomaly
detection within large-scale telemetry.

Collectively, these findings validate the analytical framework and highlight its potential operational
relevance. The approach establishes a reproducible bridge between raw system data and quantita-
tive evidence, offering the kind of clarity and auditability required for modern cybersecurity analyt-
ics. By grounding detection in interpretable statistical reasoning, the framework enables defenders
to quantify uncertainty, evaluate significance, and prioritize alerts with measurable confidence.

The upcoming phase will advance this foundation by refining baseline estimation, incorporating
probabilistic and hierarchical Bayesian models, and assessing model performance under realistic
network variability. Upon completion, the integrated system will provide a statistically robust
basis for adaptive detection thresholds, dynamic alerting, and Bayesian risk scoring—an approach
that strengthens both situational awareness and analytical rigor within security operations envi-
ronments.

16

7 Bayesian Modeling Framework

The next phase of the analysis will transition from point-estimate inference to a fully Bayesian
framework, allowing direct quantification of uncertainty and the incorporation of prior information
across attack phases.

7.1 Model Structure

For each log type—metwork, authentication, and web—the count outcomes observed during baseline
and attack windows can be modeled as Poisson or negative-binomial processes with log-linked
predictors. A simplified hierarchical model for the brute-force data, for example, can be expressed
as:

y, ~ Poisson(\,),
log(A\;) = a + (x attack, + log(exposure,),
a,f~ N(0,5).

Here, y, denotes the number of failed logins in minute ¢, and attack, is a binary indicator for
whether the interval falls within the attack window.

The log(total attempts) term acts as an offset to normalize by exposure.

Posterior inference yields the distribution of the rate ratio exp(3), directly representing the multi-
plicative change in event rate between baseline and attack periods.

7.2 Hierarchical Extension

To handle variability across users, ports, or endpoints, the parameters can be expanded hierarchi-
cally:

it ~ Poisson(,),
log(A;y) = a; + B; x attack,,
&, Bz ~ N(:uom Ug): N(,Uﬁa U%)

This structure allows partial pooling—borrowing strength across entities—stabilizing estimates for
sparse endpoints while preserving local sensitivity for high-activity ones.

7.3 Implementation
Models will be implemented in Stan via the brms interface in R:

library (brms)
m_bayes <- brm(
fails | trials(total) ~ attack,
data = auth_1m,
family = binomial(),
prior = c(prior(normal(0, 5), class = Intercept),

17

prior(normal(0, 5), class = b))
)

summary (m_bayes)

18

8

Appendix A - Session Info

sessionInfo()

##
##
##
##
#it
##
#it
##
##
##
##
##
##
##
##
#it
##
#it
##
##
##
##
##
##
##
##
##
##

R version 4.5.1 (2025-06-13)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/1ib/1libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Chicago
tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils

other attached packages:

datasets methods

base

[1] stringr_1.5.2 ggplot2_4.0.0 lubridate_1.9.4 tidyr_1.3.1 dplyr_1.1.4

loaded via a namespace (and not attached):

[1] bit_4.6.0 gtable_0.3.6
[7] scales_1.4.0 yaml_2.3.10
[13] knitr_1.50 tibble_3.3.0
[19] utf8_ 1.2.6 stringi_1.8.7

[25] cli_3.6.5 withr _3.0.2
[31] rstudioapi_0.17.1 hms_1.1.3
[37] farver_2.1.2 rmarkdown_2.3

0

19

crayon_1.5.3
fastmap_1.2.0
pillar_1.11.1
xfun_0.53
magrittr_2.0.4
lifecycle_1.0.4
purrr_1.1.0

compiler_4.5.1
R6_2.6.1
RColorBrewer_1.1-3
S7_0.2.0
digest_0.6.37
vctrs_0.6.5
tools_4.5.1

readr_2

tidyselect
labeling_O
tzdb_0.5.0
bit64_4.6.
grid_4.5.1
evaluate_1
pkgconfig

9 Appendix B - Code

9.1 Section 3.1 Data Wrangling

Folder beside this .Rmd
DATA_DIR <- "Data"
stopifnot("Data/ directory not found" = dir.exists(DATA_DIR))

net_path <- file.path(DATA_DIR, '"net_traffic.csv")
auth_path <- file.path(DATA_DIR, "auth_log.csv")
apache_path <- file.path(DATA_DIR, "apache_access.csv")

stopifnot("Missing ./Data/net_traffic.csv" file.exists(net_path))
stopifnot("Missing ./Data/auth_log.csv" file.exists(auth_path))
stopifnot("Missing ./Data/apache_access.csv" = file.exists(apache_path))

cat ("Working directory:", getwd(), "\n")
cat("Files in Data/:", paste(list.files(DATA_DIR), collapse = ", "), "\n")

suppressPackageStartupMessages ({
library(readr); library(dplyr); library(tidyr)
library(lubridate); library(ggplot2); library(stringr)

b

net <- readr::read_csv(net_path, show_col_types = FALSE)
auth <- readr::read_csv(auth_path, show_col_types = FALSE)
web <- readr::read_csv(apache_path, show_col_types = FALSE)

Find timestamp columns robustly
find ts <- function(df){
nms <- names (df)
i <- which(grepl("time|timestamp|date", nms, ignore.case = TRUE)) [1]
if (is.na(i)) stop("No timestamp-like column found.")
nms [1]

ts_net <- find_ts(net)
ts_auth <- find_ts(auth)
ts_web <- find_ts(web)

ymd_hms (.data[[ts_net]], quiet = TRUE))
ymd_hms(.data[[ts_auth]], quiet = TRUE))
ymd_hms(.datal[[ts_web]], quiet = TRUE))

net <- net %>/ mutate(timestamp
auth <- auth %>, mutate(timestamp
web <- web > mutate(timestamp

tibble(
net_rows = nrow(net), auth_rows = nrow(auth), web_rows = nrow(web),

20

net_cols = ncol(net), auth_cols = ncol(auth), web_cols = ncol (web)

)

EDIT +if your hosts/times differ
server_ip <- "192.168.56.40"
attacker_ip <- "192.168.56.101"

win_portscan <- c(ymd_hms("2025-10-10 09:12:00"), ymd_hms("2025-10-10 09:20:00"))
win_bruteforce <- c(ymd_hms("2025-10-10 09:35:00"), ymd_hms("2025-10-10 09:45:00"))
win_cmdinj <- c(ymd_hms("2025-10-10 10:05:00"), ymd_hms("2025-10-10 10:10:00"))

in_window <- function(t, win) !is.na(t) & t >= win[1] & t <= win[2]

shade_df <- tibble(

phase = c("Port scan","Brute force","Cmd injection"),

start = c(win_portscan[1], win_bruteforce[l], win_cmdinj[1]),
c(win_portscan[2], win_bruteforce[2], win_cmdinj[2])

end

shade_df

9.2 Section 3.2.Port Scan

Try typical column names for IPs/ports

col_src <- c("ip_src","src_ip","source_ip"); col_dst <- c("ip_dst","dst_ip","dest_ip","destina
col_dpt <- c("dst_port","dport","dest_port")

pick <- function(df, choices) { ch <- intersect(choices, names(df)); if (length(ch)) ch[1] els

ip_src <- pick(net, col_src)
ip_dst <- pick(net, col_dst)
dst_port<- pick(net, col_dpt)

net_as <- net %>%
filter(.datal[[ip_src]] == attacker_ip, .datal[ip_dst]] == server_ip)

net_as_bs <- net_as %>/
mutate(t5 = floor_date(timestamp, "5 seconds")) %>%

summarise (
events = dplyr::nQ),
uniq_ports = n_distinct(.datal[[dst_port]l]l),
.by = tb

) h>%

arrange (t5) %>%
mutate(in_window = in_window(t5, win_portscan))

21

Base-R moving average (k=3) and z-score spike flag
ma3 <- function(x) as.numeric(stats::filter(x, rep(1/3,3), sides = 2))
net_as_bs <- net_as_5s %>’
mutate(
ma_events = ma3(events),
z_events (events - mean(events, na.rm=TRUE))/sd(events, na.rm=TRUE),
flag_spike = abs(z_events) > 3

)

head(net_as_bs, 10)

ggplot (net_as_5s, aes(t5, events)) +

geom_line() +

geom_point(aes(color = flag_spike), size = 1.1) +

geom_rect(data = shade_df %>J, dplyr::filter(phase=="Port scan"),
aes(xmin=start, xmax=end, ymin=-Inf, ymax=Inf),
inherit.aes = FALSE, alpha = 0.12, fill = "red") +

scale_color_manual(values = c("FALSE"="black","TRUE"="red")) +

labs(x=NULL, y="Events / 5s", color="Spike?")

ggplot(net_as_bs, aes(t5, uniq_ports)) +
geom_line() + geom_point(size = 1) +
geom_rect(data = shade_df %>J, dplyr::filter(phase=="Port scan'"),
aes(xmin=start, xmax=end, ymin=-Inf, ymax=Inf),
inherit.aes = FALSE, alpha = 0.12, fill = "red") +
labs (x=NULL, y="Unique dst ports / 5s")

9.3 Section 3.3 Brute Force Attack

choose a status-like column
pick_status <- function(df){
nms <- names(df)
cands <- nms[grepl("status|result|outcome|message", nms, ignore.case = TRUE)]
if (length(cands)) return(cands[1])
nms [2] %% nms[1]
}
“%11%° <- function(a,b) if('is.null(a)) a else b

status_col <- pick_status(auth)

auth_1m <- auth %>%
mutate (minute = floor_date(timestamp, "1 minute"),
is_fail = str_to_upper(as.character(.datal[status_col]]l)) %inY%
c("FAIL","FAILED","ERROR", "DENIED","FAILURE","LOGIN FAILED","AUTH FAILURE")
summarise (

22

fails = sum(is_fail, na.rm=TRUE),

total = dplyr::n(),
.by = minute
) W>h

mutate(rate = ifelse(total>0, fails/total, NA real),
in_window = in_window(minute, win_bruteforce)) %>%
arrange (minute)

head(auth_1im, 10)

ggplot(auth_1im, aes(minute, rate)) +
geom_line() + geom_point(size=1) +
geom_rect(data = shade_df %>% dplyr::filter(phase=="Brute force"),
aes(xmin=start, xmax=end, ymin=-Inf, ymax=Inf),
inherit.aes=FALSE, alpha=0.12, fill="orange") +
scale_y_continuous(labels = scales::percent) +
labs(x=NULL, y="Fail / Total")

pre <- auth_1im %>} filter(!in_window) %>’, summarise(fails=sum(fails), total=sum(total))
att <- auth_1m %>) filter(in_window) %>, summarise(fails=sum(fails), total=sum(total))

rate_pre <- with(pre, fails/total)
rate_att <- with(att, fails/total)
rr <- if (isTRUE(rate_pre > 0)) (rate_att/rate_pre) else Inf

Approxz 95) CI on RR when counts>0
if (pre$fails>0 && att$fails>0) {
se_log_rr <- sqrt(l/att$fails + 1/pre$fails)
ci <- exp(log(rr) + c(-1,1)*1.96%se_log_rr)
cat (sprintf ("**Baselinex*: %d/%d (rate = %.3f) | =xAttackx*: Jd/%d (rate = %.3f) | =**Rat
pre$fails, pre$total, rate_pre, att$fails, att$total, rate_att, rr, cil[l], cil[2]
} else {
cat (sprintf ("**Baselinex**: %d/%d (rate = %.3f) | =x*xAttack**: Jd/%d (rate = %.3f) | =**Rat
pre$fails, pre$total, rate_pre, att$fails, att$total, rate_att, ifelse(is.finite

Quasti-Poisson model on fails with log(total) offset (robust; no MASS)

if (nrow(auth_1im) > 5 && any(auth_1im$fails > 0)) {
dfm <- auth_1im %>’ filter(total > 0) %>, mutate(attack = as.integer(in_window))
m_gp <- glm(fails ~ attack + offset(log(total)), data = dfm, family = quasipoisson())
smry <- summary(m_gp)
irr <- exp(coef(m_qgp)["attack"])
cat ("\n**Quasi-Poisson model (fails ~ attack + offset(log(total)))**\n")
print(smry$coefficients)
cat(sprintf ("\nIRR (attack vs baseline) %.2f\n\n", irr))

} else {
cat("\nNot enough variation to fit a count model.\n\n")

23

9.4 Section 3.4 Command Injection

Pick a URI-like column
pick_uri <- function(df){
nms <- names (df)
cands <- nms[grepl("uri|request|url|path", nms, ignore.case = TRUE)]
if (length(cands)) return(cands[1])
nms [2] %1% nms[1]
}

uri_col <- pick_uri(web)

ci_pattern <- "(;&&I\\TI\\$\\ (I\\b(cmd | cat|nc|wget|curl)\\b|/etc/passwd|/bin/sh)"
web_1m <- web %>Y%
mutate (minute = floor_date(timestamp, "1 minute"),
suspicious = str_detect(tolower(as.character(.datal[[uri_col]]l)), ci_pattern)) %>%
summarise(ci_hits sum(suspicious, na.rm=TRUE),
total dplyr::n(),
.by = minute) %>’
mutate(rate = ifelse(total>0, ci_hits/total, NA real),
in_window = in_window(minute, win_cmdinj)) %>%
arrange (minute)

head (web_1m, 10)

ggplot(web_1im, aes(minute, ci_hits)) +
geom_col(width = 60) +
geom_rect(data = shade_df %>% dplyr::filter(phase=="Cmd injection"),
aes(xmin=start, xmax=end, ymin=-Inf, ymax=Inf),
inherit.aes = FALSE, alpha = 0.12, fill = "purple") +
labs(x=NULL, y="CI hits / min")

pre_ci <- web_1m %>% filter(!in_window) %>} summarise(ci_hits=sum(ci_hits), total=sum(total))
att_ci <- web_1m %> filter(in_window) %>% summarise(ci_hits=sum(ci_hits), total=sum(total))

tab <- matrix(c(att_cici_hits, att_citotal - att_ci$ci_hits,
pre_cici_hits, pre_citotal - pre_ci$ci_hits),
nrow=2, byrow=TRUE,
dimnames = list(c("attack","baseline"), c("hits","nonhits")))
print (tab)

fisher_res <- fisher.test(tab) # ezact test for sparse counts

rate_pre_ci <- with(pre_ci, ci_hits/total)
rate_att_ci <- with(att_ci, ci_hits/total)

24

rr_ci <- if (isTRUE(rate_pre_ci > 0)) (rate_att_ci/rate_pre_ci) else Inf

list(
baseline_rate
attack_rate
rate_ratio

rate_pre_ci,
rate_att_ci,
rr_ci,

fisher_p = fisher_res$p.value,
fisher_res$conf.int

fisher confint

25

	Executive Summary
	Methodology
	Analytical Framework
	Data Sources
	Data Preparation
	Statistical Methods
	Integration and Validation
	Limitations

	Preliminary Results
	Port-Scan Phase — Events & Unique Ports (5 s Aggregation)
	Port Scan — Events & Unique Ports (5 s)
	Purpose
	Method
	Results and Interpretation

	Brute Force — Failure Rate & Count Model (1 m)
	Purpose
	Method
	Results and Interpretation

	Command Injection — Suspicious URIs & Exact Test (1 m)
	Purpose
	Method
	Results and Interpretation
	Limitations and Future Refinements

	Discussion and Interpretation
	Overview
	Integration Across Phases
	Interpretive Significance
	Limitations and Future Directions
	Future work will address these limitations by:

	Next Steps and Recommendations
	Purpose of this phase
	Baseline and Threshold Refinement
	Model Enhancement
	Feature and Rule Tuning
	Summary

	Conclusion
	Bayesian Modeling Framework
	Model Structure
	Hierarchical Extension
	Implementation

	Appendix A - Session Info
	Appendix B - Code
	Section 3.1 Data Wrangling
	Section 3.2.Port Scan
	Section 3.3 Brute Force Attack
	Section 3.4 Command Injection

